
15-418 Project Milestone Report
Parallelizing Boruvka’s Minimum Spanning Tree Algorithm and
Union Find Data Structure
Noor Mostafa and Rohan Shenoy

https://noor-5.github.io/parallelgraphs.github.io/

Summary
We had initially proposed performing parallel spectral clustering on graphs as our project. This
would have entailed representing a graph as a matrix, performing linear algebra computations on
the matrix, then running K-Means clustering. Based on our proposal feedback, we were made
aware that K-means would not be enough for the project. As we investigated the steps needed for
the projection, we soon recognized that much of it was linear algebra, which has been
parallelized quite extensively already.

As a result, we pivoted to a new project. We have decided to write parallel implementations of
Boruvka's algorithm for determining the minimum spanning tree of a graph. To quote Wikipedia,
a minimum spanning tree (MST) is a “subset of the edges of a connected, edge-weighted
undirected graph that connects all the vertices together, without any cycles and with the
minimum possible total edge weight.”

Boruvla’s algorithm works by finding the minimum edge out of each vertex, grouping these
together in each step, and iterating with the contracted graph. As we researched the algorithm
further, we came across two main implementations of this contraction step: one using a hashmap
of each vertex to its new vertex in the contracted graph, and another using the Union-Find
(Disjoint Set) data structure.

We have decided we will work on writing parallel versions of both implementations in OpenMP,
as well as experiment with different types of locking on the Union-Find data structure, namely:
coarse-grained locking, fine-grained locking, and lock-free. We will be using C++ and running
on the GHC machines.

https://noor-5.github.io/parallelgraphs.github.io/


Deliverables
1. Fast sequential versions of Borukva’s algorithm, using a star contraction and Union-Find

approach.
2. OpenMP parallel versions of the sequential versions.
3. Coarse grained locking on the Union-Find Data structure.
4. Fine grained locking on the Union-Find Data structure.
5. Lock-Free locking on the Union-Find Data structure.

Nice-to-Have
1. Experiment with Graph sharding to overcome memory constraints
2. Implement Boruvka’s on a GPU using a data parallel approach.

Schedule

Date Task Status

March 31 - April 6 Research Boruvka’s algorithm and
opportunities for parallelism

- Noor and Rohan

Done

April 7 - April 10 Write a sequential version of
Boruvka’s algorithm using star
contraction

- Noor and Rohan

Done

April 10 - April 13 Write graph generation script and
MST validation script

- Rohan

Done

April 14 - April 16 Write a sequential version of
Boruvka’s algorithm using a
sequential Union Find

- Noor

Done

April 17 - April 20 Use OpenMP to parallelize both
sequential versions

- Noor and Shenoy take on
one each

In Progress

April 21 - April 23 Implement coarse grained locking
for Union Find

- Noor and Shenoy

To Do

April 24 - April 27 Implement fine grained locking for To Do



Union Find
- Noor and Shenoy

April 28 - May 1 Implement lock-free Union Find
- Noor and Shenoy

To Do

May 2 - May 5 Implement a nice-to-have feature,
Create poster, write

- Noor and Shenoy

To Do

Progress
We have implemented both sequential versions, one using star contraction, and another

using Union-Find. This required research to understand the algorithm and the various
implementations. We have also set up the testing infrastructure that we will use for the remainder
of the project to ensure correctness. This involved writing a Python script to create connected
graphs with the requested number of nodes and edges. We also have written a python script to
test whether our output is truly an MST by using Python’s Networkx graph library.

We have also begun assessing our sequential code for parallelism. We have considered
parallelizing over for loops for vertices and edges, and the tradeoffs between them. We have
decided to implement OpenMP dynamic scheduler for assigning vertices to processors since
there is variable time when it comes to finding minimum edge, depending on how many
outgoing edges a vertex has. We will also use a static approach as a reference comparison. One
challenge is maintaining shared vectors between threads and preventing race conditions. The
race conditions can be problematic especially in the contracted implementations because we are
directly changing the graph hence we don’t want threads to simultaneously be contracting the
same vertex. Furthermore, for the union find, we implemented a shared data structure to keep
track of the groups of vertices that have been grouped together. Hence we need to ensure
atomicity when accessing regions of this data structure which is where our different locking/ lock
free implementations will come into play.

Poster Session
We plan on showcasing graphs displaying performance in terms of speedup of the parallel

versions of each implementation as compared to the sequential version on different sizes of
graph inputs. This will allow us to directly compare tradeoffs between each implementation as
well as how well the implementations scale as we increase processor count. We also plan on
demoing visuals of smaller graphs and their computed MST using online graph illustration
software to display the structure behind a MST. Furthermore, we will be displaying stall times/
overhead along with memory/cache misses with the different types of locking to demonstrate
their tradeoffs when it comes to performance.



Issues and Concerns
For the most part, it is about coding up the parallel versions and implementing the

locking on each implementation. Since we were able to guarantee a correct sequential version
correctly and have full understanding of the underlying algorithm , we are pretty confident that
we can implement the OpenMP version parallel version of the implementations. The main
concern would be with the lock free implementation on the Union-Find (Disjoint Set) data
structure as we haven’t exactly planned out how we are going to go about implementing it and
verifying correctness. However, we understand where the parallelism and data dependencies lie
in our program so we are hopeful we can resolve this issue.


